q Five lessons for scaling AI initiatives in the age of COVID-19 - Business Reporter

Five lessons for scaling AI initiatives in the age of COVID-19

Andrew Duncan from Infosys Consulting describes how measurable artificial intelligence initiatives should be put at the center of business strategies, supported by a skilled workforce.

AI will be a fundamental part of building resiliency in the future, helping us better navigate uncertain supply and demand, adjust to disruptions in operations, and adapt to sharp changes in consumer priorities.

Some organisations had already invested in AI programmes ahead of the pandemic, and their digital literacy gave them an edge at the start of the current crisis. For others, COVID-19 has been the accelerator they need to begin their AI journey.

Regardless of their starting point, most enterprises encounter roadblocks when scaling AI initiatives from POCs to production. To do so successfully, leaders must look beyond the pandemic and put AI at the centre of their people, process and business strategies.

1. Link to long-term business strategy

AI is a tool for solving business problems or achieving business outcomes. Any AI strategy should therefore be intrinsically linked to your COVID-19 recovery plans.

Leaders must move away from thinking about how to apply AI in the short-term, and consider their boardroom’s long-term goals, focusing on solutions that explicitly deliver on elements of this strategy; for example, predicting customer buying patterns to drive hyperpersonalised products without sacrificing real-time supply and mass customisation.

Executives also need to forecast their journey with AI to make sure they are investing in a programme that is simple enough to realise value from immediately, yet mature enough to grow with the enterprise as their needs for AI become more complex.

2. Renew your focus on data

Every digital transformation journey, including scaling AI, relies on data at its core. However, given the rarity of a pandemic, the historical data that fed many of our analytical models quickly became out of date, incomplete and unsound at the start of 2020.

In response, organisations must look to conduct audits to identify weaknesses and errors in their existing models and overhaul their data strategy. Underpinning this will be a new emphasis on data governance. But data governance doesn’t just mean more data; it means collecting, transforming and annotating the right data, both structured and unstructured. Knowing the desired outcomes of the AI initiative will be key in deciding which data may be more useful to collect and operationalise.

3. Think holistically

The vast majority of blockers when scaling an AI project come not from the IT and delivery unit, but other areas of the business: slow budgeting processes, freezes on recruiting new roles, and lack of communication across the organisation.

Taking a portfolio view of your AI programmes – looking at the business in totality and making decisions accordingly – will go a long way in overcoming these blockers. Rather than thinking of AI initiatives as a simple list of individual use cases, leaders should consider the collective success of these programmes over time. Shaping, iterating and investigating ideas holistically before a go/no go decision will make tracking ROI significantly easier in the long-term.

4. Track value and show ROI

Transitioning from AI as a source of innovation to a driver of business value is something that many companies still struggle with. At the same time, AI programmes are often more complex than traditional software implementation projects. These factors mean that projects often fail to keep momentum and focus.

Defining and tracking value throughout the course of an implementation, with emphasis on small but incremental gains, will help incentivise progress and keep programmes on track. Measuring ROI can range from simple metrics like putting out a satisfaction survey to customers, to the advanced use of machine learning to quantify responses to the implemented changes.

Most importantly, there must be a strong alignment between the C-suite’s understanding of AI and what success looks like, and the implementation team itself.

5. Look at the human side

COVID-19 has shown human-AI collaboration at its best. By scaling AI across their organisation, business leaders are investing as much in their people as they are in the technology itself. This doesn’t just mean establishing the right talent mix – although there will undoubtedly be a rise in demand for data scientists and engineers in 2021 and beyond.

Crucially, it means embedding AI ownership and accountability into all teams, ensuring employees fully understand AI and how it relates to their roles. This will inevitably include a mindset shift to agile, as well as upskilling and reskilling people to be “data native”. We also recommend moving away from siloed units or departments to cross-functional teams – something I discussed in-depth in my last article.

There is no doubt that traditional job roles and processes will be fundamentally changed by the pandemic, and AI will be core to the new ways of working. Many tasks and activities will become automated, or augmented, as we move into the next normal. While scaling enterprise AI initiatives can prove challenging, companies can ensure successful outcomes by putting AI at the heart of their digital transformation strategy.

Andrew Duncan is a Partner and UK CEO at Infosys ConsultingAndrew joined Infosys Consulting in late 2019 to lead Europe and drive its strategy and growth agenda for the region. He is a life-long consultant with a very successful and diverse background in the industry, having served in MD or CEO roles for several technology and services companies

Main image courtesy of iStockPhoto.com

© Business Reporter 2021

Top Articles

Reforming upskilling strategies for the changing work landscape

Leaders across industries must upskill the workforce to deliver new business models in the post-pandemic era

Green or greenwashing?

Procurement must stamp out greenwashing from supply chains, to ensure that organisations’ products and goals are not just a “green…

American View: Why Do Cultural Taboos Frustrate New Technology Implementation?

Businesspeople seldom evaluate new technologies on capabilities alone; why do peoples irrational beliefs impede attempts to discuss worthwhile innovations?

Related Articles

Register for our newsletter

[ajax_load_more loading_style="infinite classic" single_post="true" single_post_order="previous" post_type="post" elementor="true"]